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ABSTRACT

As part of a long term study of biological markers (biomarkers), we are

documenting a variety of features which reflect the previous presence of living

organisms. As we study meteorites and samples returned from Mars, our main clue to

recognizing possible microbial material may be the presence of biomarkers rather than

the organisms themselves. One class of biomarkers consists of biominerals which have

either been precipitated directly by microorganisms, or whose precipitation has been

influenced by the organisms. Such microbe-mediated mineral formation may include

important clues to the size, shape, and environment of the microorganisms. The

process of fossilization or mineralization can cause major changes in morphologies and

textures of the original organisms. The study of fossilized terrestrial organisms can

help provide insight into the interpretation of mineral biomarkers. This paper describes

the results of investigations of microfossils in Cambrian phosphate-rich rocks

(phosphorites) that were found in Khubsugul, Northern Mongolia.



1. INTRODUCTION

Unusual Cambrian phosphate-rich rocks (phosphorites) are found in Northern

Mongolia. [1]. Specialists have long studied these phosphatized rocks from Khubsugul

because they were believed to be a classical example of inorganic phosphate

precipitation [2]. The formation of phosphorites interbedded with carbonates, cherty

shales and cherts from the Khesen Formation was originally related to abiotic

deposition beneath upwelling zones. However, recent SEM studies of HCl-etched

samples revealed phosphatic bacteriomorphs which had been preferentially preserved

with respect to the more carbonate-rich matrix. The bacteriomorphs presented a variety

of shapes and sizes and were interpreted as fossil bacteria representing communities

consisting of consortia of different types of bacteria [1]. The filamentous

(cyanobacteria), coccoid and rod-shaped microbes have been fossilized in different

ways. This paper presents further SEM studies of this interesting microfossil

assemblage.

2. METHODS

We used the same technique for sample preparation as Rozanov and Zhegallo [1].

A freshly broken rock chip was etched in 10% HCL for 2 minutes, then cleaned in

distilled water and alcohol. The sample was coated with a thin Pt conducting layer (30

sec coating time) and was observed with a Philips FEG-SEM XL-40 at the Johnson

Space Center.

3. RESULTS AND DISCUSSION

The etched surface revealed two major types of material. The calcite matrix was

clearly etched by the acid revealing more resistant Ca phosphate or apatite which was

distributed over most of the surface as recognizable fossil microbes or microbialites.

The predominant structure consists of relatively large spherical or ovoid microbialites

ranging from 10 gm to 1 mm in diameter (Fig. 1). These frequently show both complex
concentric and radial structures similar to microoncolites or microoolites. Both

microbialites and calcite matrix contain several types of microfossils:

(1) Large, cyanobacteria-like filaments occur as hollow moulds (Fig. 2) in a

phosphate precipitate which may consist of stacked discoidal apatite crystals (Fig. 3),

more isometric crystals, or a complex texture consisting of overlapping hemispherical

to nearly spherical globules having diameters ranging from 0.1 to 0.5 gm (Fig. 4). This

latter texture is tightly packed, overlapping, and non-porous. At the end of some

filaments, the apatite crystals grade to porous network of discrete tubular forms which

may be the shape and size of the original bacteria. By contrast, another apatite texture



which makesup the walls of somefilamentsconsistsof porousnetwork of isometric
equantcrystalshaveaverynarrowsizedistribution.

(2) Theencrustedcastsof cyanobacteria(Fig. 5) consistof arobust400-500nm
thick crustwhat appearsto beblocky calcite,the outerwall of which is lined by a 50-
100nmthick coat(probablyof apatite),andan innercastof amorphousphosphate.The
crust representsthe mineralizedsheathwhereasthe innercastrepresentsthetrichome.
Thewholestructurerangesfrom 3-4p.min diameter.Sometimesanumberof filaments
are associated,as in Figure 5 in which two filaments are envelopedin a common,
hourglass-shapedsheath. In otherexamples,the apatitecrystalsmakeup the body of
thefilamentandfill in thevolume,or theapatitecrystalsmaygrow perpendicularlyto a
centralcoreorcylinder.

(3) Smaller bacteriomorphsinclude rod-shapedand coccoid structuresof
heterotrophicbacteriawhichaboundin thephosphorite.Figure6 showslargenumbers
of small, "rice-grain"-like, rod-shapedbacteriaabout1 jamin length. Thesecolonies
form wavy, garland-likematsembeddedin thecalcitematrix (Fig. 7)andweavearound
thelargercrustsandmouldsof thecyanobacteriafossiIs.

(4) Thecalcitematrix is permeatedwith curvedandcircularvoids which cross-
cut the etchedcrystalcleavagepattern(Fig. 8). The curvedmouldsareof two types:
fine, filamentousstructureswith diametersof 0.5 lamandlengthsof a few micrometers,
andthicker filaments1 _tmin diameterwith lengths> 5 _tm. Given theabundanceof
fossil bacteria and moulds of cryanobacteriatrichomes in this material, these
filamentousmouldsin thecalciteprobablyalsorepresentfossil bacteriamoulds.

Cyanobacterialmats,their mineralizationand the subsequentimplications for the
rock recordhavebeenintenselystudied[3-6]. Stromatolitesof variouskindswere,and
still are, dominatedby mucus-producingcyanobacteria,although other bacteriaalso
form part of the community lop. cit.]. In an analysis of cyanobacterial calcification,

Pentecost and Riding [7] noted that calcification can occur as the impregnation of the

interior of the sheath and/or the external encrustation around the sheath. D&arge et al.

[8] documented

the initiation of calcification in modern cyanobacteria using cryo-SEM whereas

Merz [9] documented the same process with the light microscope and normal SEM.

Gerasimenko et al. [6] experimentally studied the phosphatization of cyanobacteria,

showing that inorganic phosphate assimilation in the living organism resulted in the

phosphatization of

the sheaths upon the death of the organism. Phosphatized non-cyanobacteria have

previously been described from very differing environments. Liebig et al. [10]

documented phosphatized rod-shaped and coccoid bacteria in reducing volcanic lake

sediments from the Eocene Lake Messel Formation in southern Germany. From the

continental shelf off Peru Miocene-Quaternary phosphorite nodules are attributed to

bacterial mediation by Lamboy [1 I] who shows photographs of phosphatized rod-



shaped and coccoid bacteria, although he does not name them as such. The
mineralizationof microbial mats as a result of bacterial activity is well known [3-6, 12].

Less well known, however, are phosphatized microbial mats and stromatolites.

Phosphatised stromatolites of Jurassic age have been described from the Upper Jurassic

of Southern Spain [13]. Phosphatized microbial mats are also implicated in the

preservation of the soft parts of fossil organisms [10, 14,15].

The microfossils from the Cambrian Khesen Formation that we describe occur both

in phosphate and in calcite, both minerals apparently intermixed and contemporaneous.

Their co-precipitation probably has to do with the different species of microorganisms
within the microbial mat and their control of the immediate chemical environment.

The particular morphology of the apatite crystals fossilizing these microbial mats may

be constrained by the presence of organic matter and an organic template on which to

nucleate. The crystal morphology may, perhaps, be further linked to precipitation

mediated by specific microorganisms.

CONCLUSIONS

There is, thus, a growing body of evidence for the implication of bacterial activity

in the formation of phosphorite deposits via the phosphatization of microbes and

microbial mats in the experimental and in the rock record. This sample from the

Khubsugul Basin documents a very good example of the differing modes of

preservation of the variety of organisms that makes up the microbial consortium in a

mat environment. The mat builders, the cyanobacteria, are preserved as hollow crusts,

encrusted casts and as moulds whereas the heterotrophic bacteria are replaced casts as

well as moulds. The variety of fossil microorganisms and modes of fossilization very

much resembles that of the Early Archean microbial mat communities from the

Barberton greenstone belt of South Africa [16].

The assemblage described in this paper adds valuable information to the rapidly

enlarging database of terrestrial microfossils and biomarkers, such as microbial mats

and biofilm, which can be used as analogues for possible extraterrestrial life forms. It

also suggests that the morphology of biogenically-precipitated phosphate may be

directly related to specific microorganisms. If this is the case, then crystal morphology

may be another, valuable biomarker.
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FIGURE CAPTIONS

Figure 1. General view of the phosphate sample from the Cambrian Khesen

Formation of the Khusugul Basin, Mongolia showing oncolitic to ooid-like,

phosphatic microbialites embedded in calcite.

Figure 2. Moulds of cyanobacteria filaments embedded in an apatite matrix.

Figure 3. Detail of the discoidal apatite crystals forming the mould of the

cyanobacteria filaments.

Figure 4. Biogenically-precipitated apatite in the form of coalescing nanometer-

sized globules.

Figure 5. Double cyanobacteria filaments, replaced by phosphate, enclosed in a

calcified (?) sheath, forming an encrusted cast structure. The calcified (?) sheath

appears to be lined by a thin coat of phosphate.

Figure 6. Small, l Iam-sized, phosphatised rod-shaped bacteria in the phosphate

deposit. Scale 5 !am.

Figure 7. Phosphatised cyanobacteria filament (large arrow) in a calcite matrix with

a garland-like mat of small, phosphatised, rod-shaped bacteria (small arrows).

Figure 8. Rounded and curved hollows (arrows) representing bacteria moulds in the
calcite matrix.
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